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The development of Cyber-Physical Systems benefits from bet-
ter methods and tools to support the simulation and verification
of hybrid (continuous/discrete) models. Acumen is an open source
testbed for exploring the design space of what rigorous-but-
practical next-generation tools can deliver to developers. Central
to Acumen is the notion of rigorous simulation. Like verification
tools, rigorous simulation is intended to provide guarantees about
the behavior of the system. Like traditional simulation tools, it
is intended to be intuitive, practical, and scalable. Whether these
two goals can be achieved simultaneously is an important, long-
term challenge.

This paper proposes a design principle that can play an
important role in meeting this challenge. The principle addresses
the criticism that accumulating numerical errors is a serious
impediment to practical rigorous simulation. It is inspired by a
twofold insight: one relating to the nature of systems engineered
in the real world, and the other relating to how numerical errors
in the simulation of a model can be recast as errors in the state or
parameters of the model in the simulation. We present a suite of
small, concrete benchmarks that can be used to assess the extent
to which a rigorous simulator upholds the proposed principle.
We also report on which benchmarks Acumen’s current rigorous
simulator already succeeds and which ones remain challenging.

I. INTRODUCTION

It is widely held that there is a need for new methods
and tools to support model-based development using hybrid
continuous/discrete systems models. Acumen [17] is an open
source testbed for research into such methods and tools.
Central to Acumen is a notion of rigorous simulation that
is intended to combine the rigor of verification tools like
Charon [3], KeYmaera [16], SpaceEx [8], and Flow* [5]
with the ease of use of simulation tools like MATLAB [14]
and Modelica [9]. Rigorous simulation computes an enclosure
guaranteed to include the exact solution. As such, it is a
kind of proof that the exact solution/simulation is contained
in a particular set. Compared to more traditional mechanized
theorem provers, rigorous simulation works in a simplistic,
brute-force manner in that it largely follows the traditional
methods of simulation. The key difference is that it tracks all
possible forms of error.1 Its similarity to traditional numerical
algorithms offers hope that the run-time performance of rigor-
ous simulation can be predictable, which would advance the
ease-of-use goal. However, rigorous numerical computation,
including rigorous simulation, is sometimes criticised as being
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1See for example Darulova and Kuncak for a discussion of different types
of error [6].

infeasible in practice on account of the supposedly inevitable
accumulation of large numerical error.

A. Contributions

This paper proposes a design principle that addresses the
above-mentioned criticism. The key insight underlying the
principle is twofold:

1) Most man-made systems are designed to be stable and
robust to variations in inputs and physical parameters.

2) In many situations, it should be possible to transform
uncertainty about exact solutions into uncertainty about
the state or parameters of the system modeled.

These observations together suggest that the following princi-
ple is both desirable and plausible:

Accurate rigorous simulation should be possible for
good designs. In particular, enclosures computed
by a rigorous simulation tool for the trajectories
of a robust and stable hybrid system should be
converging.

This principle has been an important motivation for our own
work, and we hope that it could be of value to others pursuing
rigorous simulation or similar methods. We also hope that this
work may spur efforts to formalize this principle as one or
more properties about concrete rigorous simulation algorithms
and implementations.

The principle allows us to concede that there are indeed
cases in which the accumulation of errors can lead to diverging
enclosures, thus providing little information. At the same
time, it allows us to recognize that many important real-
world systems for which engineers need better tools have
characteristics that can alleviate this concern and render it
irrelevant in many - if not most - practical situations.

B. Organization of the Rest of this Paper

After a brief review of the syntax and informal semantics
for a core subset of Acumen (Section II), we present a
suite of small, concrete benchmarks that can be used to
assess the extent to which a rigorous simulator upholds this
principle. The benchmarks are classified into discrete systems
and timed systems (Section III); continuous systems (Section
IV); and hybrid systems (Section V). As the benchmarks are
presented, we identify those where Acumens current rigorous
simulator [1] already succeeds, and those which still remain
as challenges. We conclude with a summary of observations
and directions for future work (Section VI).
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II. A CORE SUBSET OF ACUMEN

In this section we briefly describe the emerging design for
the syntax and semantics of the core subset of Acumen that
will be discussed in the rest of this paper.

A. Syntax and Informal Semantics

The emerging core syntax for Acumen includes guarded
equations, where guards are conditions and equations can spec-
ify either behaviors continuous with respect to time or discrete
transitions discontinuous with respect to time. Expressions in
equations can include standard functions on real numbers and
derivatives of functions.

Values in core Acumen are functions of super-dense time
(a real number and a natural number), and their co-domain
is a real-number. We exclude from this core language some
interesting features inessential to the main point of this pa-
per. These include undirected equations, partial derivatives,
dynamically created and terminated objects, strings, vectors,
matrices, and visualisation constructs.

The Acumen implementation supports a traditional simu-
lation semantics that uses non-validated numerical methods.
This is the most complete and most widely used semantics
for basic educational uses of Acumen. It has played a crucial
role in allowing us to explore the language design space and
to converge on an expressive, minimal syntax for modeling
hybrid systems and on a formal (exact) semantics for solutions.
Among other design choices, it allowed us to make an early
decision to support the notion of super-dense time, first intro-
duced in the verification literature [12], and later advocated
by Liu, Matsikoudis and Lee [11]. This notion facilitates
modeling of discrete subsystems with multiple idealized (zero
time) and externally-observable internal transitions.

More relevant to the present work is that the implementa-
tion supports an enclosure simulation semantics intended to
produce rigorous over-approximations (guaranteed upper and
lower bounds) for all simulations [10]. This is the semantics
that we would like Acumen, ultimately, to provide as the
primary semantics. While this semantics is still a work in
progress and is not defined for all constructs handled by the
traditional one, our goal is to fully align the two.

The enclosure semantics supports the use of intervals
(closed, compact, and connected sets on the reals) in models.
As representations of sets (or, in computer science terminol-
ogy, non-determinism), enclosures and intervals provide a tool
for rigorous analysis of systems with uncertain parameters.
This has been particularly important for collaborations with
partners from the automotive industry [7], [13].

The enclosure semantics steps forward in time in a manner
similar to traditional numerical simulators. The implementa-
tion supports variable step size. Currently, this is intended
to reduce the uncertainty resulting from the treatment of
events. The release associated with this paper uses fixed time
step to make it easier to see how numerical simulation adds
uncertainty. The implementation uses Lohner sets to represent
enclosures. This is a standard representation that reduces the
effects of wrapping while solving Ordinary Differential Equa-
tions (ODEs). Acumen has its own validated ODE solver [18],

[19], [4], [15], which is built for portability and eventual
formal verification. It is expected that it will be the subject
of significant further development in the coming years. An
integrator using Taylor series is used, which, in combination
with Lohner sets, provides reasonable basic machinery for
dealing with continuous segments of a simulation.

If a discrete assignment (basically, a reset map) becomes
active, then it is performed and the entire model is checked
again for discrete assignments. This process is repeated until
a fixed point is reached. All equations in the model can be
seen as guarded by some condition. Because enclosures and
intervals are used for all values, it is possible that some guard
conditions are not decidable. For example, this is the case
when there is Zeno behavior. Acumen’s method for dealing
with Zeno behavior is described elsewhere [10]. However, it
is possible that a guard condition is not decidable even in the
absence of Zeno behavior. A more common situation is where
the enclosure for an event straddles the start or the end of the
current simulation step. In such a case, the state is split into
two parts that safely over-approximate the true and false cases
for the guard condition, and both parts are simulated. Such
parts are currently kept separate until their evolutions have
triggered the same sequence of guard conditions, at which
point they are merged back into one.

So far, we have avoided introducing a static type system in
the implementation. This choice is made to facilitate focus on
implementation techniques and operational semantics, as well
as to maintain a low entry barrier.

To familiarize the reader with Acumen’s syntax and seman-
tics, the following subsections present examples that illustrate
how discrete, continuous, and hybrid systems are expressed.

B. Modeling Purely Discrete and Timed Systems

A purely discrete system that counts from 0 to 5 instanta-
neously2 is expressed as follows:

model Disc0 () =
initially n = 0
always if n < 5 then n+ = n+1 noelse

The first line indicates that the model is called Disc0 and
that instances of this model take zero parameters. The equation
following the keyword initially sets the initial value for
the local variable n to 0. This is the first value for n at time
0. Because Acumen supports super-dense time, a variable can
have a sequence of values at the same real-valued time instant.
At all times greater than or equal to 0, one branch of the
conditional or the other will be true. Most of the work done
by this particular conditional, however, will be done at time
0: the first branch will be true until the condition n<5 no
longer holds. As long as that condition is true, the variable n
is repeatedly assigned a new “next” value (written n+ on the
left-hand side of the equation) equal to one plus the current
value of n. Thus n will have six different values (0, 1, .. 5)
at time 0. Henceforth, it will remain at value 5.

This is a highly simplistic example illustrating how con-
ditionals and reset maps (assignments for the next value of

2Meaning, with no progress of real-valued time
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a variable, expressed as n+ = ...) allow us to express
purely discrete computations. Nevertheless, it illustrates how
the ability to express purely discrete computations ensures that
the formalism can express “idealized” discrete computations
that are treated as occurring in zero time. For example, this
is how discrete computations are modeled in synchronous
languages.

When the computations in such a model are on discrete
values, the resulting enclosures should be thin, that is, contain
a single value. This is the case for the enclosures that Acumen
produces on this model.

We will use the term timed system to refer to a system that
is mostly discrete but is triggered by an analog clock, such as a
timed automata [2]. Such systems are, in fact, hybrid systems,
and modeling them is described in the relevant subsection
below.

C. Modeling Purely Continuous Systems

A purely continuous system with a single variable that is
linearly increasing with time can be expressed as follows:

model Cont0 () =
initially t = 0, t’ = 1
always t’ = 1

In contrast to the first model above, this system refers to
the derivative of a variable (denoted by ’) rather than the
next value of a variable. The equation t’=1 is a differential
equation that says that the time derivative of t is always equal
to 1. Thus, the resulting simulation for t starts at value 0 at
time 0 and has the same value as time lapsed since instantiation
of this particular model. Expressing continuous systems is
important for modeling physical components and phenomena.
As some other examples in this paper will illustrate, more
interesting dynamics can be expressed by replacing the right-
hand side of the equation with other expressions.

Acumen’s rigorous simulator uses only validated (rigorous)
numerical integration to solve all ODEs such as the one above.
In particular, no effort is made to do symbolic integration or
to find closed form solutions to certain classes of differential
equations.3 As a result, a certain amount of error can accumu-
late in each simulation time step. Consequently, as simulation
time increases, the size of the enclosure for the value of t
can gradually increase. Despite this phenomenon, examples
presented later in this paper will show how systems can have
contracting enclosures even with large uncertainty about local
timers such as t presented here.

D. Modeling Hybrid Systems

A hybrid continuous/discrete system mixes both continuous
dynamics and discrete computations and transitions. The fol-
lowing example can be seen as a minimal prototype for such
systems:

model Hybrid0 () =

3Such techniques can be sound optimizations, but it is important that the
design of the tools does not rely on them, since for general applications such
special cases are not always sufficient.

initially t = 0, t’ = 1
always if t<1 then t’ = 1 else t+ = 0

Conditionals or guards as represented by the if statement are
commonly viewed as a mechanism for event detection. In this
case, the event is represented by the condition being true or
false. In general, an event can be seen as happening when
the condition changes from true to false or vice versa. In this
example, the system allows t to grow at a constant rate until
it reaches the value of 1. As soon as this value is reached, the
second branch becomes active, and the value of t is suddenly
reset to 0. The result of the simulation should therefore be a
saw-tooth shaped pattern.

This is another system that is meta-stable rather than stable
in the sense of, say, exponential stability. Thus the enclosure
can be expected to accumulate error over time and grow in
size. This happens in Acumen. This is significant because
the resulting sawtooth pattern for t provides a natural basis
for a simple discrete clock. However, as we will see with
examples later on in this paper, even complete uncertainty
about the value of the clock does not prevent us from knowing
with perfect precision the behavior of the system after a
predetermined finite time.

E. Remark on Locally Discrete Systems

There is a difference between how discrete behaviors should
be made for variables for which a derivative has been declared
(in the initially section) and ones for which it has
not. The first example above shows us how to express such
behavior when no derivative is introduced. If one is introduced,
it becomes necessary to specify the value for the derivative
when no discrete change is taking place. For example, if there
is no change between discrete changes, then the derivative
should be set to 0. This is illustrated by the following example:

model DiscHybrid0 () =
initially t = 0, t’ = 0
always if t<5 then t+ = t+1 else t’ = 0

Without such a statement, a variable for which a derivative
was declared is considered under-specified.

III. DISCRETE AND TIMED SYSTEMS

This section presents examples of discrete systems where
enclosures should converge, despite the presence of consider-
able uncertainty not only from numerical calculations but also
from potential variability in system parameters.

For the purposes of this paper, we will view an enclosure
as converging if it reaches a fixed point where it is a subset
of the enclosure at a previous point in simulation time. For
simplicity of implementation we will further approximate this
condition by testing set containment only in the enclosure of
the simulation step that immediately precedes it.

A. Iteration and Nested Loops

Iteration can be expressed naturally in core Acumen. For
example, the computation for factorial of 5 can be expressed
as follows:
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model Disc1 () =
initially
n = 5, a = 1
always
if n > 0 then n+ = n-1, a+ = a*n noelse

A more interesting nested loop can be expressed as follows:

model Disc2 () =
initially i = 1, i_max = 3,

j = 1, j_max = 4,
k = 1, k_max = 5,
a = 0

always
if i<=i_max then

if j<=j_max then
if k<=k_max then

a+ = a+1, k+ = k+1
else (j+ = j+1, k+ = 1)

else (i+ = i+1, j+ = 1)
noelse

This example simply counts the number of iterations into
the variable a. Because the computations are discrete (no
integration, only representable numbers), Acumen computes
a thin (that is, single value) enclosure for the result.

Without really introducing any interesting dynamics, we
often want to model computations as taking some time to
compute. This can be achieved using a simple clock, such as
the one introduced previously, to produce the following model:

model Disc3 () =
initially i = 1, i_max = 3,

j = 1, j_max = 4,
k = 1, k_max = 5,
a = 0, t = 0, t’ = 1

always
if t>0.1 then
t+ = 0,
if i<=i_max then

if j<=j_max then
if k<=k_max then

a+ = a+1, k+ = k+1
else (j+ = j+1, k+ = 1)

else (i+ = i+1, j+ = 1)
noelse

else t’= 1

Acumen’s Standard Plot and How to Read it: By default,
Acumen produces a standardized plot for a simulation. The
interactive graphical user interface allows the user to zoom in
and point to parts of the enclosure to read the time and value
intervals. Labels are omitted to reduce clutter. To read the plot,
the reader should be aware of the following conventions:

• Within the gray boundary, each white rectangle represents
the plot for a particular variable.

• From top to bottom, variables appear in alphabetical
order, with derivative variables appearing directly after
the variable.

• The vertical scale is normalized to fit the minimum and
maximum values for each plot during the simulation time.

• By default, the simulation is for 10 seconds. The hori-
zontal axis represents time, with time 0 at the left end
and time 10 at the right end. For converging enclosures
the entire time is shown. For diverging enclosures, the
simulation is stopped at an earlier time to provide a more
informative visualization. In such cases, the time at which
the simulation is stopped is indicated in the text.

• All plots are generated using a fixed time step of 2−6.

The plot for the model above is as follows:

Here, instead of getting the answer 60 in the variable a
at time 0, we get to see the evolution of the value of a
over time, as well as the evolution of the values of all three
counter variables (i, j, and k). Despite the accumulation of
numerical errors in the clock variable t, after a finite amount
of time the value of a becomes exactly 60. In the interactive
development environment, this is confirmed by hovering the
mouse over the graph so that the exact value of the interval
is displayed textually. The unusual initial increase in the
enclosure for the variable t (the increasing sawtooth) is due
to an over-approximation that results from Acumen’s current
method for merging branched states. This is an implementation
artifact uncovered during this work. It has no bearing on the
main point of this paper, but it is something that can cause
convergence to fail unnecessarily on some examples. We plan
to address this issue in future work.
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Returning to the models, we can consider whether conver-
gence continues to hold if some parameters of the system are
not known exactly. For example, the following model specifies
uncertainty in the rate of the clock and the timing of the clock
reset:

model Disc3i2 () =
... // same as Disc3
always
... // same as Disc3
else t’= [0.90 .. 1.0]

The expression [0.90 .. 1.0] denotes an interval literal
that describes that t’ can be as little as 0.90 or as large as
1.0. The plot for the model above is as follows:

For this model and the previous three, Acumen produces
enclosures that first expand until a certain time value is
reached. At that time value, all enclosures except that of t
contract to a single value. Such convergence of enclosures on
discrete systems with uncertainty about timing can provide a
useful tool for estimating worst-case execution times, given
a particular computational platform for which parameters are
known only with a modest precision. Technically, achieving
single-step containment requires disabling branch merging for
all variants.

B. Finite Impulse Response (FIR) Filter

As a minimal example of digital signal processing (DSP)
code, we consider a basic finite impulse response (FIR) filter:

model Disc4 () =
initially x_0 = 10, x_1 = 0,

t = 0, t’ = 1
always
if t>0.1 then
t+ = 0,
x_1+ = x_0,
x_0+ = 0.33*x_0 + 0.33*x_1 + 0.33*5

else t’= 1

This is a second order filter that responds to a signal with
values 10, 0, and then 5 thereafter. The enclosure produced by
Acumen seems to quickly converge towards 5 for the value of
x_0, even though the clock variable t continues to accumulate
uncertainty.

To further evaluate the ability of rigorous simulation to
demonstrate the robustness of this filter, we can model uncer-
tainty about the value of multiple parameters, including initial
values, clock speed, transition timing, and the precision of the
calculation of the multiplications (reflected by imprecision in
the representation of coefficients) as follows:

model Disc4i5 () =
initially x_0 = [0.0 .. 10.0],

x_1 = [-10.0 .. 0],
t = 0, t’ = 1

always
if t>[0.09 .. 0.11] then
t+ = 0,
x_1+ = x_0,
x_0+ = [0.33 .. 0.34] * x_0 +

[0.33 .. 0.34] * x_1 +
[0.33 .. 0.34] * 5

else t’= [0.8 .. 1.2]

The plot for this model is as follows:
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Acumen’s results for this model converge towards 5, al-
though there is a notable “error margin” around 5 that the
enclosures stay outside. This is encouraging in that it shows
that the computed behavior is robust. However, this plot should
inspire a modeler/designer to dig deeper to better understand
the most significant causes for this “error margin”.

Both examples presented in this section illustrate how en-
closures can grow during a simulation of a discrete system and
still converge at later parts, thus providing computational proof
that the particular system being considered is stable and robust
to a given degree of variability, in the exact values of key
parameters within the given level of uncertainty. Interestingly,
in these examples, single-step containment was not achieved
except in the final (most general) example. It was necessary
to disable branch merging, and the earlier examples generated
too many branches.

IV. CONTINUOUS SYSTEMS

Uncertainty about the initial state of the system described
by the second model above can be expressed as follows:

model Cont0i0 () =
initially t = [0.0 .. 1.0], t’ = 1
always t’ = 1

The enclosure for this model is not contracting. Instead, we
get a wide band representing all possible solutions starting
between 0 and 1.0 and increasing at a constant rate of 1. The
non-convergent nature of the enclosure is to be expected, as the
underlying system is not stable in the sense of, for example,
converging exponentially to a given value.

A. A First Order Linear System

A prototypical example of an exponentially stable system
can be expressed as follows:

model Cont1 () =
initially x = 0, x’ = 1
always x’ = 1-x

Uncertainty about the initial value for such a system can be
expressed as follows:

model Cont1i0 () =
initially x = [-0.75 .. 0.75], x’ = 1
always x’ = 1 - x

and has the following plot:

The plot shows that the enclosure for x converges towards
1. Even if we add uncertainty about the value of x used in the
equation, as expressed in this model, the enclosure appears to
continue to converge:

model Cont1i1 () =
initially x = [-0.75 .. 0.75], x’ = 1
always x’ = 1 - [0.9 .. 1.1] * x

The plot for this enclosure is as follows:

Convergence is towards an “error margin” around the value
of 1 because the precise value depends on the coefficient of x.
If there is explicit uncertainty about the target, as expressed
in this model, the resulting enclosure has similar behavior:

model Cont1i2 () =
initially x = [-0.75 .. 0.75], x’ = 1
always x’ = [0.9 .. 1.1] - x

The plot for this enclosure is as follows:

The following model combines all three types of uncer-
tainty:

model Cont1i3 () =
initially x = [-0.75 .. 0.75], x’ = 1
always x’ = [0.9 .. 1.1] -

[0.9 .. 1.1] * x

The following plot shows that we still have convergence:

It also seems that the error margin becomes about as big
as the sum of the two previous error margins. As in the FIR
example, it will be up to the modeler/designer to determine the
implications of this error margin on the success of the design.
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Single-step containment was achieved for all variants with the
default settings.

B. A Second Order Linear System

A second order system exposes more subtleties and some
challenges to convergence. Consider the following basic
model:

model Cont2 () =
initially x = 0, x’ = 0, x’’ = 1
always x’’ = (1-x)-x’

The plot for this for model is as follows:

This enclosure appears to converge. We can add uncertainty
about the initial values as follows:

model Cont2i1 () =
initially x = [-0.5 .. 0.5],

x’ = [-0.5 .. 0.5], x’’ = 1
always x’’ = (1 - x)-x’

The plot for this model is as follows:

The enclosure is more interesting and still appears to con-
verge. Next, we may consider introducing uncertainty about
the target value as follows:

model Cont2i2_ () =
initially x = 0, x’ = 0, x’’ = 1
always x’’ = ([0.90 .. 1.1] - x) - x’

The plot for this model up to time 5 seconds is as follows:

Unfortunately, this model is not converging. But can a
slight reformulation help convergence? Consider the following
model:

model Cont2i2 () =
initially x = 0, x’ = 0, x’’ = 1,

a = [0.9 .. 1.1], a’ = 0
always x’’ = (a - x) - x’, a’ = 0

It has the following plot:

With default settings the enclosure for the model still even-
tually diverges. However, adding a basic error redistribution
method does achieve single-step containment for all variants
above except the last one (2i2). Thus, seemingly minor
changes can affect the impact of redistribution.

Now let us consider introducing uncertainty in the gain in
the feedback in this equation:

model Cont2i3__ () =
initially x = 0, x’ = 0, x’’ = 1,

b = [0.9 .. 1.1], b’ = 0
always x’’ = b * (1 - x) - x’, b’ = 0

With default settings, this has a divergent enclosure. Similarly,
even a named coefficient, as expressed here, yields a divergent
enclosure:

model Cont2i4__ () =
initially x = 0, x’ = 0, x’’ = 1,

c = [0.5 .. 1.5], c’ = 0
always x’’ = (1 - x) - c * x’, c’ = 0

Enabling error redistribution removes the apparent divergence,
but is not sufficient to achieve single-step containment.
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C. A Second Order Non-Linear System

A classic non-linear equation is that of a pendulum:

model Cont3 () =
initially x = 0, x’ = 0, x’’ = 1
always x’’ = sin(pi/2-x)-x’

This kind of non-linearity is typical in 2- and 3-dimensional
classical mechanics. The plot for this model is as follows:

The enclosure for this system appears to converge. However,
consider a variant with even minor uncertainty about the
initial conditions:

model Cont3i1_ () =
initially x =[-0.05 .. 0.05],

x’ = 0, x’’=1
always x’’ = sin(pi/2-x)-x’

The resulting enclosure diverges:

We can recover single-step containment by error redistribution
in all cases where we have uncertainty in one parameter at a
time. But when we have uncertainty in all parameters, this
fails and we observe divergence.

V. HYBRID SYSTEMS

In this section we present observations and benchmarks
relating to hybrid systems. The benchmarks illustrate both how
quickly combining the continuous and discrete can compound
complexities for achieving convergence, and how it can also
offer some new opportunities for facilitating it.

A. Discretized Sensing/Actuation

The following model represents a situation where the output
of a controller is not written continually to the system being
controlled but rather in a sampled manner:

model Cont4hd_ () =
initially x = 0, x’ = 0, i = 0,

o = 1, t = 0, t’ = 1

always
x’ = o,
if t>0.5
then o+ = 1-x, t+ = 0

else t’=1

The plot for this model is as follows:

In the current implementation the enclosure for this system
diverges. Our current hypothesis is that the cause is over-
approximations in event handling. However, further investi-
gation is needed to confirm this.

B. Zeno Systems

A final and important type of system that is useful for
evaluating the extent to which an implementation realizes the
proposed principle is Zeno systems [10]. Zeno behavior is
known to be a phenomena unique to hybrid systems that
naturally arises in models of mechanical systems, control
systems, and others.

A classic example of a model that exhibits Zeno behavior
is a bouncing ball:

model Hybrid1 () =
initially
x = 10, x’ = 0, x’’ = -10

always
claim x>=0,
if x <= 0 && x’ < 0
then x’+ = -x’/2
else x’’ = -10

The variable x represents the height of a ball that falls to
the ground. Upon impact with the ground, the ball bounces
(switches direction) with half the speed. The claim statement
is essentially syntactic sugar for a conditional that leads to
blocking the system (having no solution) in the second branch.
Analysis of the model would reveal that the bouncing speed
becomes zero after a finite amount of time known as the Zeno
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time. However, the ball would have to bounce an unbounded
number of times before reaching this point.

In previous work [10] we were able to show that it is
possible to simulate such models past the Zeno point using
a fixed-point computation on enclosures during simulation.
However, such enclosures are not necessarily converging past
the Zeno point. They generally have the following form:

This enclosure is already interesting in that it is going beyond
the Zeno point: traditional methods either loop infinitely or
skip some events, sacrificing rigour.

To get convergence in such situations, it seems necessary
for the user to enrich the model with additional information
that a powerful theorem prover could possibly infer, but is
not self-evident. For the system described, the addition would
be an explicit model of the energy of the bouncing ball, and
an explicit statement of the relation between the speed of the
ball and the energy at a given time. This model is expressed
as follows:

model Hybrid2 () =
initially
x = 10, x’ = 0, x’’ = -10,
e = 0*0/2 + 10*10

always
claim x >= 0,
claim e == x’*x’/2 + 10*x,
if x <= 0 && x’ < 0
then x’+ = -x’/2, e+ = [0 .. 0.25]*e
else x’’ = -10

It results in the following enclosure:

The enclosure converge, and adding a degree of uncertainly
to virtually all parameters in this model does not seem to
interfere with this convergence.

We note that this model cannot be simulated with branch
merging disabled. Zeno systems generate a large number of
branches that necessitate frequent merging.

VI. CONCLUSIONS

This paper articulates a principle for the design of rigorous
simulation tools. The principle addresses the criticism that the
accumulation of numerical errors can be a serious impediment
to making such tools practical. It reflects a twofold insight: part
relating to the nature of systems engineered in the real world,
and another relating to how accumulating numerical errors
can be dynamically recast as modeled errors. If the system
modeled is robust and stable it should absorb the latter type
of error, enabling more accurate simulation. We present a suite
of small, concrete benchmarks that can be used to assess the
extent to which a rigorous simulator upholds this principle. We
also identify the benchmarks where Acumen’s current rigorous
simulator [1] already succeeds in, and which ones remain as
goals.

Figure 1 summarizes our observations about Acumen’s
performance on these benchmarks. In some cases, Acumen al-
ready realizes the principle. In others, preliminary experiments
suggest that an explicit error redistribution strategy, along
with more precise branch merging, can lead to improvement.
In others still, adding additional constraints in the models
exhibiting Zeno behavior helps. But there are also cases, such
as those of nonlinear ODEs and hybrid systems with delay
(sample & hold), that still pose a challenge.

More broadly, there are practical challenges to testing
convergence. First, here we simplified testing of convergence
to comparing only with the last simulation step. A converging
system can be periodic, and detecting such cases requires
searching the entire history. Second, it was necessary to disable
adaptive stepping to accelerate the accumulation of numeri-
cal errors. This leaves the possibility that enabling adaptive
stepping can itself be another way to achieve convergence.
Third, and maybe most importantly, convergence can depend
on the size of the uncertainty. One way to address this problem
may be to develop methods for finding a maximal set of
uncertainties (under a suitable norm) for which the enclosure
converges.

We hope that this work builds a good case for the value
of such a principle in building practical tools, and encourages
further exploration of this idea. More generally, we hope it
stimulates more discussion on design principles that can help
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Type Feature Model Uncertainty Benchmark Convergence (A/B)
Discrete Loop - Disc1, Disc2 Y/Y
Timed Loop - Disc3 –/Y

Rate, or/and reset Disc3i0 ... 2 –/Y
FIR Rate, reset, arithmetic, or IVs Disc4i0 ... 4 –/–

Rate, reset, arithmetic, and IVs Disc4i5 –/Y
Continuous Linear, 1st ord. - Cont1 Y/Y

IV, gain, or/and target Cont1i0 ... 3 Y/Y
Linear, 2nd ord. - Cont2 N/Y

Various Cont2i0,1,2_,3_,4_ N/Y
Various Cont2i2,3__,4__ N/–

Nonlinear, 2nd ord. - Cont3 N/Y
IVs, target, or gains Cont3i1_ ... 5_ N/Y
IVs, target, and gains Cont3i6_ N/N

Hybrid Linear, 1st ord. - Cont4 –/–
Sample & pass - Cont4h_ –/–
Sample hold - Cont4hd_ N/N
BB - Hybrid1 N/N
BB w/ energy - Hybrid2 Y/Y

IVs, all param’s Hybrid2i1 ... 5 Y/–

Fig. 1. Enclosure convergence of primary dynamics in benchmarks as demonstrated using Acumen’s most recent rigorous simulator. Shorthands: A = Without
error redistribution. B = With error redistribution and branch merging disabled. Y = Single-step containment confirmed. “–” = No apparent divergence (up to
time 50 seconds model time). N = Divergence observed. FIR = Finite impulse response. IV = Initial value. BB = Bouncing Ball.

ensure the practical usability and accessibility of rigorous
simulation tools.
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Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao
Dang, and Oded Maler. SpaceEx: Scalable verification of hybrid
systems. In Computer Aided Verification, pages 379–395. Springer,
2011.

[9] Peter Fritzson. Principles of object-oriented modeling and simulation
with Modelica 2.1. John Wiley & Sons, 2010.
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